Learning fast accurate movements requires intact frontostriatal circuits

نویسندگان

  • Britne Shabbott
  • Roshni Ravindran
  • Joseph W. Schumacher
  • Paula B. Wasserman
  • Karen S. Marder
  • Pietro Mazzoni
چکیده

The basal ganglia are known to play a crucial role in movement execution, but their importance for motor skill learning remains unclear. Obstacles to our understanding include the lack of a universally accepted definition of motor skill learning (definition confound), and difficulties in distinguishing learning deficits from execution impairments (performance confound). We studied how healthy subjects and subjects with a basal ganglia disorder learn fast accurate reaching movements. We addressed the definition and performance confounds by: (1) focusing on an operationally defined core element of motor skill learning (speed-accuracy learning), and (2) using normal variation in initial performance to separate movement execution impairment from motor learning abnormalities. We measured motor skill learning as performance improvement in a reaching task with a speed-accuracy trade-off. We compared the performance of subjects with Huntington's disease (HD), a neurodegenerative basal ganglia disorder, to that of premanifest carriers of the HD mutation and of control subjects. The initial movements of HD subjects were less skilled (slower and/or less accurate) than those of control subjects. To factor out these differences in initial execution, we modeled the relationship between learning and baseline performance in control subjects. Subjects with HD exhibited a clear learning impairment that was not explained by differences in initial performance. These results support a role for the basal ganglia in both movement execution and motor skill learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frontostriatal Circuits and the Development of Bulimia Nervosa

Bulimia nervosa (BN) is characterized by both recurrent episodes of binge eating that are, in part, defined by a sense of loss of control and compensatory behaviors to avoid weight gain. Impulsive behaviors are also common in individuals with BN, indicating more pervasive difficulties in behavioral self-regulation. Findings from functional and anatomical neuroimaging studies of individuals with...

متن کامل

Frontostriatal white matter integrity mediates adult age differences in probabilistic reward learning.

Frontostriatal circuits have been implicated in reward learning, and emerging findings suggest that frontal white matter structural integrity and probabilistic reward learning are reduced in older age. This cross-sectional study examined whether age differences in frontostriatal white matter integrity could account for age differences in reward learning in a community life span sample of human ...

متن کامل

Intact mirror-tracing and impaired rotary-pursuit skill learning in patients with Huntington's disease: evidence for dissociable memory systems in skill learning.

Skill learning in early-stage Huntington's disease (HD) patients was compared with that of normal controls on 2 perceptual-motor tasks, rotary pursuit and mirror tracing. HD patients demonstrated a dissociation between impaired rotary-pursuit and intact mirror-tracing skill learning. These results suggest that different forms of perceptual-motor skill learning are mediated by separable neural c...

متن کامل

Neural substrates of cognitive skill learning in Parkinson's disease.

While cognitive skill learning is normally acquired implicitly through frontostriatal circuitry in healthy individuals, neuroimaging studies suggest that patients with Parkinson's disease (PD) do so by activating alternate, intact brain areas associated with explicit memory processing. To further test this hypothesis, 10 patients with PD and 12 healthy controls were tested on a modified, learni...

متن کامل

Prefrontal dopamine in associative learning and memory.

Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013